
  

Implementing Abstractions
Part Two



  

Previously, on CS106B...



class OurStack {
public:
    OurStack();

    void push(int value);
    int  peek() const;
    int  pop();

    int  size() const;
    bool isEmpty() const;

private:
    int* elems;
    int  allocatedSize;
    int  logicalSize;
};
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Cradle to Grave

int main() {
    OurStack stack;

    /* The stack lives a rich, happy,
     * fulfilling life, the kind we
     * all aspire to.
     */

    return 0;
}
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Memory
Leak!



Cleaning Up our Messes



  

Destructors
● A destructor is a special 

member function 
responsible for cleaning up 
an object's memory.

● It’s automatically called 
whenever an object’s 
lifetime ends (for example, 
if it’s a local variable that 
goes out of scope.)

● The destructor for a class 
named ClassName has 
signature

~ClassName();

class OurStack {
public:
    OurStack();
    ~OurStack();

    void push(int value);
    int  peek() const;
    int  pop();

    int  size() const;
    bool isEmpty() const;

private:
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    int  allocatedSize;
    int  logicalSize;
};
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    delete[] elems;
}
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Getting More Space
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 5 Items
Moved

 6 Items
Moved
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What is the big-O cost of a push?
What is the big-O cost of n pushes?



Every push beyond the first
few requires moving all n

elements from the old array
to the new array.

Cost of a single push: O(n).
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Every push beyond the first
few requires moving all n

elements from the old array
to the new array.

 
Cost of doing n pushes:

4 + 5 + 6 + … + n = O(n2).
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Question: How do we 
speed this up?





Now, only half the 
pushes we do will 
require moving 

everything to a new 
array.
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Half of our pushes take
time O(1) because there’s

free space left.
 

Half of our pushes take
time O(n) as we move

all the elements.
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What’s the average work
done with each push?

To find out, let’s see how
much total work was done.
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This roughly 
halves the 
work done.







If we make the new 
array too big, we’re 
might not make use 
of all the new space.

 

What’s a good 
compromise?



Idea: Make the new 
array twice as big 

as the old one.
 

This gives us a lot of 
free space, and we 

never use more than 
twice the space we 

need.



  

How do we analyze this?
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Average cost of a push: O(1).
 

Total cost of doing n pushes: O(n).



  

Amortized Analysis
● The analysis we have just done is called an 

amortized analysis.
● We reason about the total work done by allowing 

ourselves to backcharge work to previous 
operations, then look at the “average” amount of 
work done per operation.

● In an amortized sense, our implementation of the 
stack is extremely fast!

● This is one of the most common approaches to 
implementing Stack (and Vector, for that matter).



  

Summary for Today
● We can make our stack grow by creating new 

arrays any time we run out of space.
● Growing that array by one extra slot or two 

extra slots uses little memory, but makes 
pushes expensive (average cost O(n)).

● Doubling the size of the array when we run 
out of space uses more memory, but makes 
pushes cheap (amortized cost O(1)).

● In practice, it’s worth paying this slight space 
cost for a marked improvement in runtime.



  

Your Action Items
● Read Chapter 11 and Chapter 12.1

● There’s a lot of useful information there 
about dynamic memory allocation and class 
design.

● Start Assignment 5.
● Aim to complete Debugging Warmups 

tonight and String Simulation by Monday at 
the start of lecture.

● Ask for help if you need it! That’s what we’re 
here for.



  

Next Time
● No Class Monday 🇺🇸
● Then, When We Get Back…

● Hash Functions
– A magical and wonderful gift from the world of 

mathematics.
● Hash Tables

– How do we implement Map and Set?
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