

Implementing Abstractions
Part Two

Previously, on CS106B...

class OurStack {
public:
 OurStack();

 void push(int value);
 int peek() const;
 int pop();

 int size() const;
 bool isEmpty() const;

private:
 int* elems;
 int allocatedSize;
 int logicalSize;
};

class OurStack {
public:
 OurStack();

 void push(int value);
 int peek() const;
 int pop();

 int size() const;
 bool isEmpty() const;

private:
 int* elems;
 int allocatedSize;
 int logicalSize;
};

class OurStack {
public:
 OurStack();

 void push(int value);
 int peek() const;
 int pop();

 int size() const;
 bool isEmpty() const;

private:
 int* elems;
 int allocatedSize;
 int logicalSize;
};

private:
 int* elems;
 int allocatedSize;
 int logicalSize;

allocatedSize

logicalSize

 ☞

elems

private:
 int* elems;
 int allocatedSize;
 int logicalSize;

allocatedSize

logicalSize

 ☞

elems

private:
 int* elems;
 int allocatedSize;
 int logicalSize;

allocatedSize

logicalSize

 ☞

elems

private:
 int* elems;
 int allocatedSize;
 int logicalSize;

allocatedSize

logicalSize

 ☞

elems

private:
 int* elems;
 int allocatedSize;
 int logicalSize;

allocatedSize

logicalSize

 ☞

elems

private:
 int* elems;
 int allocatedSize;
 int logicalSize;

allocatedSize

logicalSize

 ☞

elems

private:
 int* elems;
 int allocatedSize;
 int logicalSize;

allocatedSize

logicalSize

 ☞

elems

private:
 int* elems;
 int allocatedSize;
 int logicalSize;

allocatedSize

logicalSize

 ☞

elems

class OurStack {
public:
 OurStack();

 void push(int value);
 int peek() const;
 int pop();

 int size() const;
 bool isEmpty() const;

private:
 int* elems;
 int allocatedSize;
 int logicalSize;
};

class OurStack {
public:
 OurStack();

 void push(int value);
 int peek() const;
 int pop();

 int size() const;
 bool isEmpty() const;

private:
 int* elems;
 int allocatedSize;
 int logicalSize;
};

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

???

???

allocated
size

logical
size

element
array

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

???

???

allocated
size

logical
size

element
array OurStack::OurStack() {

 logicalSize = 0;
 allocatedSize = kInitialSize;
 elems = new int[allocatedSize];
}

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array OurStack::OurStack() {

 logicalSize = 0;
 allocatedSize = kInitialSize;
 elems = new int[allocatedSize];
}

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

Memory
Leak!

Cleaning Up our Messes

Destructors
● A destructor is a special

member function
responsible for cleaning up
an object's memory.

● It’s automatically called
whenever an object’s
lifetime ends (for example,
if it’s a local variable that
goes out of scope.)

● The destructor for a class
named ClassName has
signature

~ClassName();

class OurStack {
public:
 OurStack();
 ~OurStack();

 void push(int value);
 int peek() const;
 int pop();

 int size() const;
 bool isEmpty() const;

private:
 int* elems;
 int allocatedSize;
 int logicalSize;
};

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

???

???

allocated
size

logical
size

element
array

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

???

???

allocated
size

logical
size

element
array OurStack::OurStack() {

 logicalSize = 0;
 allocatedSize = kInitialSize;
 elems = new int[allocatedSize];
}

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array OurStack::OurStack() {

 logicalSize = 0;
 allocatedSize = kInitialSize;
 elems = new int[allocatedSize];
}

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array

delete[]

OurStack::~OurStack() {
 delete[] elems;
}

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array

delete[]
Dynamic

Deallocation!

OurStack::~OurStack() {
 delete[] elems;
}

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array

OurStack::~OurStack() {
 delete[] elems;
}

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

Getting More Space

 ☜

elems

 ☜

elems

allocatedSize = /* bigger */;

 ☜

elems

 ☞

helper

allocatedSize = /* bigger */;
int* helper = new int[allocatedSize];

 ☜

elems

 ☞

helper

allocatedSize = /* bigger */;
int* helper = new int[allocatedSize];

/* … move elements over … */

 ☜

elems

 ☞

helper

delete[]

Dynamic
Deallocation!

allocatedSize = /* bigger */;
int* helper = new int[allocatedSize];

/* … move elements over … */

delete[] elems;

 ☜

elems

 ☞

helper

allocatedSize = /* bigger */;
int* helper = new int[allocatedSize];

/* … move elements over … */

delete[] elems;

 ☜

elems

 ☞

helper

allocatedSize = /* bigger */;
int* helper = new int[allocatedSize];

/* … move elements over … */

delete[] elems;
elems = helper;

 ☞

elems

 ☞

helper

allocatedSize = /* bigger */;
int* helper = new int[allocatedSize];

/* … move elements over … */

delete[] elems;
elems = helper;

 4 Items
Moved

 5 Items
Moved

 6 Items
Moved

 7 Items
Moved

What is the big-O cost of a push?
What is the big-O cost of n pushes?

Every push beyond the first
few requires moving all n

elements from the old array
to the new array.

Cost of a single push: O(n).

 4 Items
Moved

 5 Items
Moved

 6 Items
Moved

 7 Items
Moved

Every push beyond the first
few requires moving all n

elements from the old array
to the new array.

Cost of doing n pushes:

4 + 5 + 6 + … + n = O(n2).

 4 Items
Moved

 5 Items
Moved

 6 Items
Moved

 7 Items
Moved

Question: How do we
speed this up?

Now, only half the
pushes we do will
require moving

everything to a new
array.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

one.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

two.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

two.

Half of our pushes take
time O(1) because there’s

free space left.

Half of our pushes take
time O(n) as we move

all the elements.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

two.

What’s the average work
done with each push?

To find out, let’s see how
much total work was done.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

two.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

two.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

two.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

two.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

two.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

two.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

two.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

two.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

two.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

two.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

two.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

two.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

two.

This roughly
halves the
work done.

If we make the new
array too big, we’re
might not make use
of all the new space.

What’s a good
compromise?

Idea: Make the new
array twice as big

as the old one.

This gives us a lot of
free space, and we

never use more than
twice the space we

need.

How do we analyze this?

W
or

k
D

on
e

Operation Number

Increase array
size by adding

one.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

two.

W
or

k
D

on
e

Operation Number

Increase array
size by

multiplying
by two.

W
or

k
D

on
e

Operation Number

Increase array
size by

multiplying
by two.

Most pushes take time
O(1) because there’s

free space left.

Infrequently, a push might
take time O(n) as we

move all the elements.

W
or

k
D

on
e

Operation Number

Increase array
size by

multiplying
by two.

What’s the average work
done with each push?

To find out, let’s see how
much total work was done.

W
or

k
D

on
e

Operation Number

Increase array
size by

multiplying
by two.

W
or

k
D

on
e

Operation Number

Increase array
size by

multiplying
by two.

W
or

k
D

on
e

Operation Number

Increase array
size by

multiplying
by two.

W
or

k
D

on
e

Operation Number

Increase array
size by

multiplying
by two.

W
or

k
D

on
e

Operation Number

Increase array
size by

multiplying
by two.

W
or

k
D

on
e

Operation Number

Increase array
size by

multiplying
by two.

W
or

k
D

on
e

Operation Number

Increase array
size by

multiplying
by two.

W
or

k
D

on
e

Operation Number

Increase array
size by

multiplying
by two.

W
or

k
D

on
e

Operation Number

Increase array
size by

multiplying
by two.

W
or

k
D

on
e

Operation Number

Increase array
size by

multiplying
by two.

Average cost of a push: O(1).

Total cost of doing n pushes: O(n).

Amortized Analysis
● The analysis we have just done is called an

amortized analysis.
● We reason about the total work done by allowing

ourselves to backcharge work to previous
operations, then look at the “average” amount of
work done per operation.

● In an amortized sense, our implementation of the
stack is extremely fast!

● This is one of the most common approaches to
implementing Stack (and Vector, for that matter).

Summary for Today
● We can make our stack grow by creating new

arrays any time we run out of space.
● Growing that array by one extra slot or two

extra slots uses little memory, but makes
pushes expensive (average cost O(n)).

● Doubling the size of the array when we run
out of space uses more memory, but makes
pushes cheap (amortized cost O(1)).

● In practice, it’s worth paying this slight space
cost for a marked improvement in runtime.

Your Action Items
● Read Chapter 11 and Chapter 12.1

● There’s a lot of useful information there
about dynamic memory allocation and class
design.

● Start Assignment 5.
● Aim to complete Debugging Warmups

tonight and String Simulation by Monday at
the start of lecture.

● Ask for help if you need it! That’s what we’re
here for.

Next Time
● No Class Monday 🇺🇸
● Then, When We Get Back…

● Hash Functions
– A magical and wonderful gift from the world of

mathematics.
● Hash Tables

– How do we implement Map and Set?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

